
CS107 Exam C Reference Sheet

C Strings
size_t strlen(const char *str);
 returns the length of str

int strcmp(const char *s, const char *t);
 Compares s to t. Returns <0 if s < t, 0 if s == t, >0 if s > t

int strncmp(const char *s, const char *t, size_t n);
 Compares s to t up to n characters. Returns <0, 0, or >0 as strcmp does

char *strchr(const char *s, int ch);
 Returns a pointer to the first occurrence of ch in s, or NULL if not found

char *strstr(const char *haystack, const char *needle);
 Returns a pointer to the first occurrence of needle in haystack, or NULL

if not found

char *strcpy(char *dst, const char *src);
 Copies src string to dst string. Strings must be properly null-terminated.
 Caller is responsible for assuring there is space for src in dst.

Returns dst

char *strncpy(char *dst, const char *src, size_t n);
 Similar to strcpy, but only copies at most n bytes. If there is no null byte
 in the first n bytes of src, the string placed into dst will not be null-
 terminated.

char *strcat(char *dst, const char *src);
 Appends src to the end of dst, overwriting the original null-terminator
 in dst, and adding a null-terminator to the end of the resulting string.
 Caller is responsible for assuring there is space in dst for the appended
 string.

char *strncat(char *dst, const char *src, size_t n);
 Similar to strcat, but only uses at most n bytes from src. As with strcat(),

the resulting string in dst is always null-terminated.
If src contains n or more bytes, strncat() writes n+1 bytes to dst
(n from src plus the terminating null byte). Therefore, the size of
dst must be at least strlen(dst)+n+1.

size_t strspn(const char *s, const char *accept);
 calculates the length (in bytes) of the initial segment of s which

consists entirely of bytes in accept.

size_t strcspn(const char *s, const char *reject);
 calculates the length of the initial segment of s which consists

entirely of bytes not in reject.

char *strdup(const char *s);
 returns a pointer to a new string which is a duplicate of the string s.

Memory for the new string is obtained with malloc, and should be freed with
free.

char *strndup(const char *s, size_t n);
similar to strdup, but copies at most n bytes. If s is longer than n,
only n bytes are copied, and a terminating null byte ('\0') is added.
Memory for the new string is obtained with malloc, and should be freed with

 free.

int atoi(const char *s);
 converts the initial portion of the string pointed to by s to int

long strtol(const char *s, char **endptr, int base);
 converts the initial part of the string in s to a long integer value

according to the given base. If endptr is not NULL, strtol() stores
the address of the first invalid character in *endptr.

Memory
void *malloc(size_t sz);
 allocates size bytes and returns a pointer to the allocated memory.

The memory is not initialized.

void *calloc(size_t nmemb, size_t sz);
 allocates memory for an array of nmemb elements of size bytes each

and returns a pointer to the allocated memory. The memory is set to zero.

void *realloc(void *ptr, size_t sz);
 changes the size of the memory block pointed to by ptr to size bytes.

The contents will be unchanged in the range from the start of the region
up to the minimum of the old and new sizes. If the new size is larger
than the old size, the added memory will not be initialized.

void free(void *ptr);
 frees the memory space pointed to by ptr, which must have been returned by a

previous call to malloc(), calloc(), or realloc().

void *memcpy(void *dst, const void *src, size_t n);
 copies n bytes from memory area src to memory area dst.

The memory areas must not overlap. Returns dst.

void *memmove(void *dst, const void *src, size_t n);
 copies n bytes from memory area src to memory area dst. Returns dst.

void *memset(void *s, int c, size_t n);
 fills the first n bytes of the memory area pointed to by s with the

constant byte c.

Search and sort
void qsort(void *base, size_t nmemb, size_t size,
 int (*compar)(const void *, const void *));
 The qsort() function sorts an array with nmemb elements of size size.
 The base argument points to the start of the array. The contents of the
 array are sorted in ascending order according to a comparison function
 referenced by compar.

void *bsearch(const void *key, const void *base, size_t nmemb, size_t size,

 int (*compar)(const void *, const void *));
The bsearch() function searches an array of nmemb objects, the initial
member of which is pointed to by base, for a member that matches the object
pointed to by key. The size of each member of the array is specified
by size. The contents of the array should be in ascending sorted order
according to the comparison function referenced by compar.

I/O
char *fgets(char buf[], int buflen, FILE *fp);
 fgets() reads in at most buflen - 1 characters from fp and
 stores them into the buffer addressed by buf. Reading stops after an
 EOF or a newline. If a newline is read, it is stored into the buffer.
 A terminating null byte ('\0') is stored after the last character in
 the buffer. fgets() returns buf on success, and NULL on error or when
 end of file occurs while no characters have been read.

Defined Constants
#define CHAR_MIN -128
#define CHAR_MAX 127
#define UCHAR_MAX 255

#define SHRT_MIN -32768
#define SHRT_MAX 32767
#define USHRT_MAX 65535

#define INT_MIN -2147483648
#define INT_MAX 2147483647
#define UINT_MAX 4294967295

#define LONG_MIN -9223372036854775808
#define LONG_MAX 9223372036854775807
#define ULONG_MAX 18446744073709551615

Decimal / Hex / Binary values, 0-15

decimal hex binary
0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
10 a 1010
11 b 1011
12 c 1100
13 d 1101
14 e 1110
15 f 1111

