
CS107 November 4th, 2024

Autumn 2024

CS107 Midterm Examination Solution

Solution 1: UTF-8 and Four-Byte Encodings [10 points]

In Assignment 1, you implemented a function to transform Unicode code points to UTF-8 byte
arrays. The assignment itself limited the scope to encodings that are either one, two, or three
bytes in length.

Some code points—those for hieroglyphics, emojis, and more esoteric mathematical symbols,
to name a few—are encoded using four bytes. In particular, all Unicode code points from
0x10000 up through and including 0x1FFFFF can be encoded as:

11110--- 10------ 10------ 10------

on the assumption that each of the hyphens in the above pattern can be either 0 or 1,
independent of other hyphens.

For this problem, you will implement the codepoint function, which accepts an array of
unsigned chars known to be of length 4 and returns the corresponding codepoint as an
unsigned int. You should assume the byte at position 0 is the lead byte—the one that
should start with 11110—and the bytes at positions 1, 2, and 3 are the continuation bytes that
should start with 10.

a) [6 points] In the space below, complete the implementation of the codepoint function.

For the moment, assume is_valid_lead and is_valid_continuation are fully
functional and work as you’d expect. You may and should use whatever bitwise operations
you’d like.

unsigned int codepoint(unsigned char bytes[]) {
 if (!is_valid_lead(bytes[0])) error(1, 0, "Byte 0 is malformed.");
 for (size_t i = 1; i < 4; i++) {
 if (!is_valid_continuation(bytes[i]))
 error(1, 0, "Byte %zu is malformed.", i); // %zu is placeholder for size_t
 }

 unsigned int code = 0;
 code |= (0x07 & bytes[0]) << 18;
 for (size_t i = 1; i < 4; i++) {
 code |= (0x3F & bytes[i]) << (6 * (3 - i));
 }
 return code;
}

 2

b) [4 points, 2 and 2] Use this page to present implementations of is_valid_lead and
is_valid_continuation, subject to the following constraints:

• Your implementation of is_valid_lead should return true if and only if the five
most significant bits of the incoming byte are 11110. Your implementation is
limited to using &, |, hexadecimal/decimal/binary constants, ==, and !=. Your
implementation may not use <<, >>, or any other logical or arithmetic operators.

• Your implementation of is_valid_continuation should return true if and
only if the two most significant bits of the incoming byte are 10. Your
implementation may use <<, >>, !=, ==, and any constants you deem necessary,
though no other bitwise, arithmetic, or relational operators may be used.

bool is_valid_lead(unsigned char byte) {
 return (byte & 0xF8) == 0xF0;
}

bool is_valid_continuation(unsigned char byte) {
 return (byte >> 6) == 0x02;
}

Here’s a test harness, just for fun!

int main(int argc, char *argv[]) {
 unsigned char first[] = {0xf0, 0x90, 0x80, 0x80}; // for 𒀀
 printf("Codepoint: 0x%x\n", codepoint(first));
 unsigned char nails[] = {0xf0, 0x9f, 0x92, 0x85}; // for 💅
 printf("Codepoint: 0x%x\n", codepoint(nails));
 unsigned char bear[] = {0xf0, 0x9f, 0xa7, 0xb8}; // for 🧸
 printf("Codepoint: 0x%x\n", codepoint(bear));
 return 0;
}

 3

Problem 2: Constructing main’s argv [10 points]

Implement the parse function code to the following prototype:

size_t parse(char *cmd, char *argv[], size_t len);

which accepts a string of single space-delimited tokens, updates that string in place so that
each token is terminated by a dedicated '\0', and then stores the leading addresses of each
token in the supplied array of char *’s. For instance, if the supplied cmd string at first looks
like this (where that 0 is really a '\0'):

then the implementation would update cmd in place to look like this

and store the addresses of the leading characters—that is, the addresses of mywhich’s 'm',
ls’s 'l', emacs’s 'e', and cat’s 'c'—in argv[0], argv[1], argv[2], and argv[3],
respectively, and argv[4] would be set to NULL. In this scenario, our parse function would
return a 4 so the client knows how many meaningful tokens were stored in the argv array.

For simplicity, we’ll assume the tokens are comprised of lowercase letters delimited by single
spaces and that there aren’t any gratuitous spaces before the first token or after the last one.
The number of tokens in cmd needn’t be four but could be any nonnegative number. You
should ensure at most len - 1 meaningful addresses get written in the argv array. If your
implementation fills up argv, you can stop parsing and simply return len - 1.

Your implementation must use of strspn, strcspn, strchr, and/or strstr to determine
how long each token is. In particular, you may not effectively reimplement any of these four
functions instead of using them directly. Your implementation must take care to write a NULL
in the argv slot just beyond that slot storing the last token, and you must return the number of
meaningful addresses stored in argv. Your function shouldn’t dynamically allocate any
memory, since all of the memory it needs already exists before parse is even called. The
parse function you’re implementing here is a reduced version of what the terminal does to
prepare the argument vectors passed to main functions.

Present your implementation of parse on the next page.

mywhich ls emacs cat0

mywhich0ls0emacs0cat0

 4

/*
 * Arguments: cmd is a valid C string of single-space delimited tokens
 * argv is the array of char *s that should be populated with
 * the leading addresses of each token
 * len is the length of the supplied argv array
 * Return: the number of tokens in the supplied cmd string
 */
size_t parse(char *cmd, char *argv[], size_t len) {
 assert(len >= 1);
 size_t i = 0;
 while (i < len - 1) {
 argv[i] = cmd;
 cmd += strcspn(cmd, " ");
 i++;
 if (*cmd == '\0') break; // we’re already at the end of the full cmd
 *cmd = '\0';
 cmd++;
 }
 argv[i] = NULL;
 return i;
}

Check out this full test harness I’ve set up for this problem right here:

https://cplayground.com/?p=cheetah-pony-sardine

 5

Problem 3: Hashing Strings by Length [10 points]

Given an array of C strings (all guaranteed to be words in the English language), implement a
function called distribute that dynamically allocates, populates, and ultimately returns an
array of 45 records of the following type:

 typedef struct {
 char *words; // serialization of all words in this group
 size_t count; // number of English words stored in this group
 } group;

All words stored in any single group are of the same length. In particular, the 0th group will
store English words of length 1, the 1th group will store English words of length 2, and in
general, the kth group will store English words of length k + 1. Initially, all words and count
fields are zeroed out as NULL’s and 0’s, respectively. The empty string isn’t a word in the
English language, so we don’t need a group for length 0 strings. And the longest word in the
English language—pneumonoultramicroscopicsilicovolcanoconiosis, by the way—is 45 letters
long. That’s why we need 45 records.

Here’s the prototype of the distribute function you’ll implement:

 group *distribute(const char *words[], size_t n);

This distribute function should traverse the supplied words array exactly once and
populate the 0th slot of an array with copies of all strings of length 1, the 1th slot with all strings
of length 2, and so forth, until all strings have been processed. You should ensure the memory
reachable from each of the words fields is only as large as needed. Restated, words is initially
NULL to reflect the absence of string but needs to be repeatedly reallocated to be just large
enough to store the strings that have been copied there so far. If, say, there are a total of 112
strings of length 23 in the words array passed to distribute, then the group at index 22
will be reallocated a total of 112 times.

One caveat: Because all words in any single group are of the same length, the words fields
within any given group should point to single character array capable of storing all words
back-to-back, without any intervening '\0's. If, for instance, a group stores seven words of
length 6, words would address a character buffer of length 7 * 6 = 42 bytes. If, say, these
seven words were "eschew", "dragon", "pillow", "ground", "ragged", "zephyr",
and "humble", then those 42 bytes of heap memory would be populated with:

Your task is to implement the distribute function according to the above specification. You
shouldn’t worry about sorting the words, and you shouldn’t worry about repeated words
either. You can assume all words are of length 45 or less, and you needn’t do any error
checking or use assert anywhere. Present your implementation on the next page.

eschewdragonpillowgroundraggedzephyrhumble

 6

 typedef struct {
 char *words; // serialization of all words in this group
 size_t count; // number of English words stored in this group
 } group;

/*
 * Arguments: words is an array of C strings, all assumed to be
 * English words of length 45 or less
 * n is the number of strings in the words array
 * Return: the base address of the 45 group records, fully
 * initialized with all of the words as described above.
 */
group *distribute(const char *words[], size_t n) {
 group *groups = malloc(45 * sizeof(group));
 for (size_t i = 0; i < 45; i++) {
 groups[i].words = NULL;
 groups[i].count = 0;
 }

 for (size_t i = 0; i < n; i++) {
 size_t len = strlen(words[i]);
 size_t slot = len - 1;
 groups[slot].words = realloc(groups[slot].words,
 (groups[slot].count + 1) * len);
 strncpy(groups[slot].words + groups[slot].count * len,
 words[i], len);
 groups[slot].count++;
 }

 return groups;
}

Here’s the test harness I created to make sure everything worked as intended:

https://cplayground.com/?p=elephant-elephant-siamang

 7

Problem 4: Generics and Sorting [10 points]
Implement the generic function is_sorted to return true if and only if the supplied array is
sorted from low to high. If, for instance, our is_sorted function was called on the following
integer array of length 8, we would like is_sorted to return true, since no two elements
are out of order.

If that 46 at index 4 were a 26 instead, then we’d want is_sorted to return false.

Of course, we want our function to work on arrays of any type. With that in mind, present
your implementation of a generic is_sorted function that accepts the base address of an
array, the number of elements in that array, the size of each array element, and a generic
comparison function that returns a negative, zero, or positive value to signal that the first
argument is less than, equal to, or greater than the second argument, respectively.

a) [7 points] Implement the generic is_sorted function that returns that returns true if
and only if the array is sorted according to the supplied comparison function.

/*
 * Arguments: base is the base address of the array
 * num_elems is the logical number of elements in the array
 * elem_size is the size of each array element, in bytes
 * cmpfn is a generic comparison function that returns
 * 0 if the two addressed elements are identical,
 * a negative number if the first element is less than
 * the second, and a positive number otherwise.
 */
bool is_sorted(void *base, size_t num_elems, size_t elem_size,
 int (*cmpfn)(void *, void *)) {
 for (size_t i = 0; i < num_elems - 1; i++) {
 void *first = (char *) base + i * elem_size;
 void *second = (char *) first + elem_size;
 if (cmpfn(first, second) > 0) return false;
 }
 return true;
}

14 26 31 31 46 60 71 81

 8

Given a fully functional is_sorted, we should be able to verify that an array of C strings is
sorted alphabetically (or formally, lexicographically). For this question, you’re to implement a
compare_strings comparison function so that the following program passes through the
assert statements without crashing, prints Everything works! on a line by itself, and
returns from main without incident.

 int main(int argc, char *argv[]) {

 char *fruits[] = {"apple", "banana", "cranberry", "date"};
 assert(is_sorted(fruits, 4, sizeof(char *), compare_strings));
 char *veggies[] = {"carrot", "potato", "zucchini", "artichoke"};
 assert(!is_sorted(veggies, 4, sizeof(char *), compare_strings));
 printf("Everything works!\n");
 return 0;
 }

b) [3 points] Present your implementation of compare_strings to return a negative

number, a zero, or a positive number to signal that the C string reachable from the first
argument is less than, the same as, or greater than the C string reachable from the
second argument, respectively. Your implementation should ultimately rely on a call to
strcmp to actually do the comparison.

 int compare_strings(void *first, void *second) {
 return strcmp(*(char **)first, *(char **)second);
 }

Feel free to inspect this fully functional test framework set up for this problem:

https://cplayground.com/?p=chameleon-coati-kudu

