
1
This document is copyright (C) Stanford Computer Science, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan, Nick Troccoli, and others.

CS107 Lecture 15
Introduction to Assembly, Take II

Reading: B&O 3.1-3.4

2

Move Operations

The mov instruction copies bytes from one location to another.
It’s akin to the assignment (=) in C where the arguments are reversed.

mov src,dst

src can be any one of:
• Immediate

• Register

• Memory Location

$0x314

%rbx

0x6005c0

dst can always be a register, but it can never
be an immediate. It can also be a memory

location, though only one of src and dst can
be a memory location in any one mov

instruction. x86-64 doesn’t support arbitrary
memory-to-memory moves.

3

Operand Forms: Immediate

mov $0x104,______

Copy the value 0x104
into some destination.

4

Operand Forms: Registers

mov %rbx,____

mov ____,%rcx

Copy the value in
register %rbx into
some destination.

Copy the value from
some source into

register %rcx.

5

Operand Forms: Absolute Addresses

mov 0x104,_____

mov _____,0x104

Copy the value at
address 0x104 into
some destination.

Copy the value from
some source into the
memory at address

0x104.

6

Practice: Operand Forms

What do each of the following mov instructions do? Assume the value 5 is
stored at address 0x42, and the value 8 is stored in %rbx.

1. mov $0x42,%rax

2. mov 0x42,%rax

3. mov %rbx,0x55

7

Operand Forms: Indirect

mov (%rbx),_____

mov _____,(%rbx)

Copy the value at the address
stored in register %rbx into

some destination.

Copy the value from some source
into the memory at the address

stored in register %rbx.

8

Operand Forms: Base + Displacement

mov 0x10(%rax),_____

mov _____,0x10(%rax)

Copy the value at the address
0x10 more than what is

stored in register %rax into
some destination.

Copy the value from some source into the
memory at the address that is 0x10 more

than what is stored in register %rax.

9

Operand Forms: Indexed

mov (%rax,%rdx),_____

mov _____,(%rax,%rdx)

Copy the value at the address %rax + %rdx
into some destination.

Copy the value from some source into the
memory at the address %rax + %rdx.

10

Operand Forms: Indexed

mov 0x10(%rbx,%rdx),_____

mov ______,0x40(%r8,%r9)

Copy the value at the address
%rbx + %rdx + 0x10 into some destination.

Copy the value from some source into the
memory at the address %r8 + %r9 + 0x40 .

11

Practice: Operand Forms

What do each of the following mov instructions do? Assume the value 0x11
is stored at address 0x10C, 0xAB is stored at address 0x104, 0x100 is stored
in register %rax and 0x3 is stored in %rdx.

1. mov $0x42,(%rax)
2. mov 4(%rax),%rcx
3. mov 9(%rax,%rdx),%rcx

Imm(rb, ri) is equivalent to address Imm + R[rb] + R[ri]

Displacement: positive or
negative constant (if missing, = 0)

Base: register
(if missing, = 0)

Index: register
(if missing, = 0)

12

Operand Forms: Scaled Indexed

mov (%rcx,%rax,8),_____

mov _____,(%rdi,%rsi,4)

Copy the value at the address
%rcx + 8 * %rax into some destination.

Copy the value from some source into the memory at the
address %rdi + 4 * %rsi .

13

Operand Forms: Scaled Indexed

mov 0x4(%rax,%r11,8),_____

mov ______,0x1(%rbx,%rdx,4)

Copy the value at the address
%rax + 8 * %r11 + 0x4 into some destination.

Copy the value from some source into the memory at the
address %rbx + 4 * %rdx + 0x1 .

14

Most General Operand Form

Imm(rb, ri, s) is equivalent to
address Imm + R[rb] + R[ri]*s
Displacement:

pos/neg constant
(if missing, = 0)

Index: register
(if missing, = 0)

Scale must be
1,2,4, or 8

(if missing, = 1)

Base: register (if
missing, = 0)

15

Practice: Operand Forms

What do each of the following mov instructions do? For this problem,
assume the value 0x1 is stored in register %rcx, the value 0x100 is stored in
register %rax, the value 0x3 is stored in register %rdx, and value 0x11 is
stored at address 0x10C.

1. mov $0x42,0xfc(,%rcx,4)

2. mov (%rax,%rdx,4),%rbx

16

Baby’s First Assembly: Revisited

int sum_array(int arr[], int nelems) {
 int sum = 0;
 for (int i = 0; i < nelems; i++) {
 sum += arr[i];
 }
 return sum;
}

00000000004005b6 <sum_array>:
 4005b6: ba 00 00 00 00 mov $0x0,%edx
 4005bb: b8 00 00 00 00 mov $0x0,%eax
 4005c0: eb 09 jmp 4005cb <sum_array+0x15>
 4005c2: 48 63 ca movslq %edx,%rcx
 4005c5: 03 04 8f add (%rdi,%rcx,4),%eax
 4005c8: 83 c2 01 add $0x1,%edx
 4005cb: 39 f2 cmp %esi,%edx
 4005cd: 7c f3 jl 4005c2 <sum_array+0xc>
 4005cf: f3 c3 repz retq

We’re finally understanding some real
assembly! What makes sense at this point?

• Registers store addresses and values
• mov src, dst copies value from src to dst
• sizeof(int) is 4
• Instructions executed sequentially by default

We’ll come back to this
example in future lectures!

17

From Assembly to C
Spend a few minutes thinking about where the mov instruction might come
into play. What line of C might compile to each of the following?
• Examples:

1. mov $0x0,%rdx
2. mov %rdx,%rcx
3. mov $0x42,(%rdi)
4. mov (%rdi,%rcx,8),%rax

Indirect addressing is
essentially pointer arithmetic

and dereference.

long y = 0;
long offset = y;

arr[0] = 66;
long w = arr[offset];

18

Fill in the blank to complete the C code that

int x = ...
int *ptr = malloc(…);
...
___???___ = _???_;

mov %ecx,(%rax)

Extra Practice 1

<val of x>

%ecx

Try subbing in <x> and <ptr>
with actual values, like 4

and 0x7fff80

<val of ptr>

%rax

1. mystery line compiles to this assembly
2. registers hold these values

19

Fill in the blank to complete the C code that

int x = ...
int *ptr = malloc(…);
...
___???___ = _???_;

mov %ecx,(%rax)

Extra Practice 1

<val of x>

%ecx

<val of ptr>

%rax

*ptr = x;

20

Fill in the blank to complete the C code that 1. generates this assembly
 2. results in this register layout
long *arr = malloc(…);
...
long num = ____???___;

mov (%rdi, %rcx, 8),%rax

Extra Practice 2

<val of num>

%rax

3
%rcx

<val of arr>

%rdi

21

Fill in the blank to complete the C code that 1. generates this assembly
 2. results in this register layout
long *arr = malloc(…);
...
long num = ____???___;

mov (%rdi, %rcx, 8),%rax

Extra Practice 2

long num = arr[3];
long num = *(arr + 3);
long num = *(arr + y);

assume long y = 3;
declared earlier

<val of num>

%rax

3
%rcx

<val of arr>

%rdi

22

Fill in the blank to complete the C code that 1. generates this assembly
 2. has this register layout
char *str = malloc(…);
long i = 2;
___???___ = 'c';

movb $0x63,(%rcx,%rdx,1)

Extra Practice 3

<val of str>

%rcx

2
%rdx

23

Fill in the blank to complete the C code that 1. generates this assembly
 2. has this register layout
char *str = malloc(…);
long i = 2;
___???___ = 'c';

movb $0x63,(%rcx,%rdx,1)

Extra Practice 3

<val of str>

%rcx

2
%rdx

str[i] = 'c';
*(str + i) = 'c';

24

Bonus: Sneak peek into next week
• The below code is the objdump of a C function, foo.

• foo keeps its 1st and 2nd parameters are in registers %rdi and %rsi, respectively.

0x4005b6 <foo> mov (%rdi),%rax
0x4005b9 <foo+3> mov (%rsi),%rdx
0x4005bc <foo+6> mov %rdx,(%rdi)
0x4005bf <foo+9> mov %rax,(%rsi)

0x7fffe868

%rdi

0x7fffe870

%rsi

42

1000
0x7fffe870

0x7fffe868
8 bytes

%rax %rdx

1. What does this function do?
2. What C code could have

generated this assembly?
(Hints: make up C variable names as
needed, assume all regs 64-bit)

1000 42

25

Bonus: Sneak peek into next week
• The below code is the objdump of a C function, foo.

• foo keeps its 1st and 2nd parameters are in registers %rdi and %rsi, respectively.

0x4005b6 <foo> mov (%rdi),%rax
0x4005b9 <foo+3> mov (%rsi),%rdx
0x4005bc <foo+6> mov %rdx,(%rdi)
0x4005bf <foo+9> mov %rax,(%rsi)

0x7fffe868

%rdi

0x7fffe870

%rsi

1000

42
0x7fffe870

0x7fffe868
8 bytes

%rax %rdx

1000 42

void foo(long *xp, long *yp) {
 long a = *xp;
 long b = *yp;
 *yp = a;
 *xp = b;
 ...

