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Move Operations

The mov instruction copies bytes from one location to another.
It’s akin to the assignment (=) in C where the arguments are reversed.

mov src,dst

src can be any one of:
* Immediate $0x314

dst can always be a register, but it can never
be an immediate. It can also be a memory
. location, though only one of srcand dst can
(0 74 ’
* RegISter %rbx be a memory location in any one mov
instruction. x86-64 doesn’t support arbitrary
memory-to-memory moves.

* Memory Location Ox6005cO



Operand Forms: Immediate

mov $Ox104,

Copy the value 9x104
into some destination.



Operand Forms: Registers

Copy the valuein

register %rbx into
some destination.

mov %rbx, ____

,
o __gorcX
\Copy the value from

some source into
register %rcx.

4

mov



Operand Forms: Absolute Addresses

Copy the value at

address ©x104 into
some destination.

mov

mov , OX104

\ Copy the value from

some source into the
memory at address
Ox104. 5



Practice: Operand Forms

What do each of the following mov instructions do? Assume the value 5 is

stored at address ©x42, and the value 8 is stored in %rbxX.

1. mov $0x42,%rax

2. mov 0x42,%rax

3. mov %rbx,0x55




Operand Forms: Indirect

Copy the value at the address

stored in register %rbx into
some destination.

into the memory at the address
stored in register %rbx. 7



Operand Forms: Base + Displacement

Copy the value at the address
®x10 more than what is
/ stored in register %rax into

mov @X 1 @ ( 96 rax ) . some destination.

mov ,OXx10 (%rax)
Copy the value from some source into the

memory at the address that is @x10 more
than what is stored in register %rax. s



Operand Forms: Indexed

Copy the value at the address %rax + %rdx

into some destination.

/

mov (%rax,%rdx) ,

mov s (%rax,%rdx)

Copy the value from§ne source into the
memory at the address %rax + %rdx.



Operand Forms: Indexed

Copy the value at the address
/ %rbx + %rdx + O0x10 into some destination.

mov Ox10 (%rbx,%rdx) ,

mov s OX40 (%r8,%r9)

______ \

Copy the value from some source into the

memory at the address %r8 + %r9 + 0x40 . )
1



Practice: Operand Forms

What do each of the following mov instructions do? Assume the value Ox11
is stored at address Ox10C, OxAB is stored at address ©x104, 0x100 is stored

in register %rax and ©x3 is stored in %rdx.

1. mov $0x42, (%rax)
2. mov 4 (%rax) ,%rcx

3. mov 9(%rax,%rdx) ,%rcx v»@q
&
Imm(r,, r;) isequivalentto address Imm + R[r;b] + R[Ki]
/ ]
Displacement: positive or Base: register Index: register

—

negative constant (if missing, = 0) (if missing, = 0) (if missing, = 0)




Operand Forms: Scaled Indexed

Copy the value at the address
/ %rcx + 8 * %rax into some destination.

mov %rcxX,%rax,8),

mov o (%rdi,%rsi,4)

Copy the value from some source into the memory at the
address %rdi + 4 x %rsi .
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Operand Forms: Scaled Indexed

Copy the value at the address
/ %rax + 8 *%rl1ll + 0x4 into some destination.

mov Ox4(%rax,%rll,8),

mov s OX1(%rbx,%rdx,4)

Copy the value from some sourceXto the memory at the
address %rbx + 4 x %rdx + Ox1.
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Most General Operand Form

Imm(r,, r;, s)isequivalentto
address/Imm + R[r/'b] + Rg'i]*sK

Displacement: Index: register
pos/neg constant (if missing, = 0)
(if missing, = 0) Base: register (if

Scale must be
1,2,4, or 8
(if missing, = 1)

missing, = 0)
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Practice: Operand Forms

What do each of the following mov instructions do? For this problem,
assume the value Ox1 is stored in register %rcx, the value @x100 is stored in

register %rax, the value @x3 is stored in register %rdx, and value Ox11 is
stored at address ©x10C.

1. mov  $0x42,0xfc(,%rcx,4)

2. mov (%rax,%rdx,4) ,%rbx
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Baby’s First Assembly: Revisited

int sum_array(int arr[], int nelems) { We’re finally understanding some real
int sum = 0; assembly! What makes sense at this point?
for (int i = 0; 1 < nelems; 1i++) {
sum += arr[i]; * Registers store addresses and values
} » mov src, dst copies value from srctodst
return sum; * sizeof(int) is4
} * Instructions executed sequentially by default

00000000004005b6 <sum_array>:

4005b6: ba 00 00 00 00 mov SO0, %edx
4005bb: b8 00 00 00 0606 mov SOx0,%eax
4005c0: eb 09 jmp 4005cb <sum_array+0x15>
4005c2: 48 63 ca movslq %edx,%rcx
4005c5: 03 04 8f add %rdi,%rcx,4) ,%eax
4005c8: 83 c2 01 add $Ox1,%edx
Y =e e ; cmp %esi,%edx Dne
4 We’llcome back to this jl 4005c2 <sum_array+0xc> @4
4 example in future lectures! repz retq €
16




From Assembly to C

Spend a few minutes thinking about where the mov instruction might come
into play. What line of C might compile to each of the following?

e Examples:

1. mov $Ox0,%rdx long y = 0O;

2. mov %rdx,%rcx long offset = y;
3. mov $Ox42, (%rdi) arr[0] = 66;

4. mov %rdi,%rcx,8) ,%rax long w = arr[offset];

Indirect addressing is
essentially pointer arithmetic
and dereference.

2

¢/
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Extra Practice 1

Fill in the blank to complete the C code that
1. mystery line compiles to this assembly
int x = ... 2. registers hold these values

int *ptr = malloc(..);

mov %ecx, (%rax)

__ _ Try subbing in <x> and <ptr>
oo el ot e with actual values, like 4

%ecx %~ rax and Ox7fff80
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Extra Practice 1

Fill in the blank to complete the C code that

int x = ...
int *ptr = malloc(..);

??? = ??? *ptr = x;

mov %ecx, (%rax)

%ecx %~ rax
19



Extra Practice 2

Fill in the blank to complete the C code that 1. generates this assembly
2. results in this register layout

long *arr = malloc(..);

long num = 227

mov (%rdi, %rcx, 8),%rax

<val of num> <val of arr>

%rax %Trcx %rdi




Extra Practice 2

Fill in the blank to complete the C code that 1. generates this assembly
2. results in this register layout

long *arr = malloc(..);

long num = arr[3];
long num = *(arr + 3);

S G P long num

assume long y = 3;
declared earlier

mov (%rdi, %rcx, 8),%rax

<val of num> <val of arr>

%rax %Trcx %rdi
21



Extra Practice 3

Fill in the blank to complete the C code that 1. generates this assembly
2. has this register layout

char *str = malloc(..);
long i = 2;
?P? = 'c';

J

movb $0x63, (%rcx,%srdx,1)

%Trcx %rdx




Extra Practice 3

Fill in the blank to complete the C code that 1. generates this assembly
2. has this register layout

char *str = malloc(..);
long i = 2;
?P? = 'c';

J

movb $0x63, (%rcx,%srdx,1)

%Trcx %rdx

str[i] = 'c';
*(str + 1) = 'c';
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Bonus: Sheak peek into next week

* The below code is the objdump of a C function, foo.
» foo keeps its 15t and 2" parameters are in registers %rdi and %rsi, respectively.

©x4005b6 <foo> mov (%rdi),%rax 42
Ox4005b9 <foo+3>  mov (%rsi),%rdx 1000

Ox4005bc <foo+6>  mov %rdx, (%rdi)
Ox4005bf <foo+9> mov %rax, (%rsi)

‘ 8 bytes g

1. What does this function do? ox7fffe868 Ox7fffe870

2. What C code could have %rdi %rsi
generated this assembly?

(Hints: make up C variable names as 1000

needed, assume all regs 64-bit) o%rax % rdx
(s} (o] ’
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Bonus: Sheak peek into next week

* The below code is the objdump of a C function, foo.
» foo keeps its 15t and 2" parameters are in registers %rdi and %rsi, respectively.

0x4005b6 <foo> mov (%rdi),%rax 1000
Ox4005b9 <foo+3>  mov (%rsi),%rdx 20

Ox4005bc <foo+6>  mov %rdx, (%rdi)
Ox4005bf <foo+9> mov %rax, (%rsi)

‘ 8 bytes

long a = *xp; %rd| %rs.
long b = *yp;

%rax %rdx

*Xp = b;
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