CS107 Lecture 15

Introduction to Assembly, Take Il

Reading: B&0 3.1-3.4

This document is copyright (C) Stanford Computer Science, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan, Nick Troccoli, and others.

Move Operations

The mov instruction copies bytes from one location to another.
It’s akin to the assignment (=) in C where the arguments are reversed.

mov src,dst

src can be any one of:
* Immediate $0x314

dst can always be a register, but it can never
be an immediate. It can also be a memory
. location, though only one of srcand dst can
(0 74 ’
* RegISter %rbx be a memory location in any one mov
instruction. x86-64 doesn’t support arbitrary
memory-to-memory moves.

* Memory Location Ox6005cO

Operand Forms: Immediate

mov $Ox104,

Copy the value 9x104
into some destination.

Operand Forms: Registers

Copy the valuein

register %rbx into
some destination.

mov %rbx, ____

,
o __gorcX
\Copy the value from

some source into
register %rcx.

4

mov

Operand Forms: Absolute Addresses

Copy the value at

address ©x104 into
some destination.

mov

mov , OX104

\ Copy the value from

some source into the
memory at address
Ox104. 5

Practice: Operand Forms

What do each of the following mov instructions do? Assume the value 5 is

stored at address ©x42, and the value 8 is stored in %rbxX.

1. mov $0x42,%rax

2. mov 0x42,%rax

3. mov %rbx,0x55

Operand Forms: Indirect

Copy the value at the address

stored in register %rbx into
some destination.

into the memory at the address
stored in register %rbx. 7

Operand Forms: Base + Displacement

Copy the value at the address
®x10 more than what is
/ stored in register %rax into

mov @X 1 @ (96 rax) . some destination.

mov ,OXx10 (%rax)
Copy the value from some source into the

memory at the address that is @x10 more
than what is stored in register %rax. s

Operand Forms: Indexed

Copy the value at the address %rax + %rdx

into some destination.

/

mov (%rax,%rdx) ,

mov s (%rax,%rdx)

Copy the value from§ne source into the
memory at the address %rax + %rdx.

Operand Forms: Indexed

Copy the value at the address
/ %rbx + %rdx + O0x10 into some destination.

mov Ox10 (%rbx,%rdx) ,

mov s OX40 (%r8,%r9)

______ \

Copy the value from some source into the

memory at the address %r8 + %r9 + 0x40 .)
1

Practice: Operand Forms

What do each of the following mov instructions do? Assume the value Ox11
is stored at address Ox10C, OxAB is stored at address ©x104, 0x100 is stored

in register %rax and ©x3 is stored in %rdx.

1. mov $0x42, (%rax)
2. mov 4 (%rax) ,%rcx

3. mov 9(%rax,%rdx) ,%rcx v»@q
&
Imm(r,, r;) isequivalentto address Imm + R[r;b] + R[Ki]
/]
Displacement: positive or Base: register Index: register

—

negative constant (if missing, = 0) (if missing, = 0) (if missing, = 0)

Operand Forms: Scaled Indexed

Copy the value at the address
/ %rcx + 8 * %rax into some destination.

mov %rcxX,%rax,8),

mov o (%rdi,%rsi,4)

Copy the value from some source into the memory at the
address %rdi + 4 x %rsi .

12

Operand Forms: Scaled Indexed

Copy the value at the address
/ %rax + 8 *%rl1ll + 0x4 into some destination.

mov Ox4(%rax,%rll,8),

mov s OX1(%rbx,%rdx,4)

Copy the value from some sourceXto the memory at the
address %rbx + 4 x %rdx + Ox1.

13

Most General Operand Form

Imm(r,, r;, s)isequivalentto
address/Imm + R[r/'b] + Rg'i]*sK

Displacement: Index: register
pos/neg constant (if missing, = 0)
(if missing, = 0) Base: register (if

Scale must be
1,2,4, or 8
(if missing, = 1)

missing, = 0)

14

Practice: Operand Forms

What do each of the following mov instructions do? For this problem,
assume the value Ox1 is stored in register %rcx, the value @x100 is stored in

register %rax, the value @x3 is stored in register %rdx, and value Ox11 is
stored at address ©x10C.

1. mov $0x42,0xfc(,%rcx,4)

2. mov (%rax,%rdx,4) ,%rbx

15

Baby’s First Assembly: Revisited

int sum_array(int arr[], int nelems) { We’re finally understanding some real
int sum = 0; assembly! What makes sense at this point?
for (int i = 0; 1 < nelems; 1i++) {
sum += arr[i]; * Registers store addresses and values
} » mov src, dst copies value from srctodst
return sum; * sizeof(int) is4
} * Instructions executed sequentially by default

00000000004005b6 <sum_array>:

4005b6: ba 00 00 00 00 mov SO0, %edx
4005bb: b8 00 00 00 0606 mov SOx0,%eax
4005c0: eb 09 jmp 4005cb <sum_array+0x15>
4005c2: 48 63 ca movslq %edx,%rcx
4005c5: 03 04 8f add %rdi,%rcx,4) ,%eax
4005c8: 83 c2 01 add $Ox1,%edx
Y =e e ; cmp %esi,%edx Dne
4 We’llcome back to this jl 4005c2 <sum_array+0xc> @4
4 example in future lectures! repz retq €
16

From Assembly to C

Spend a few minutes thinking about where the mov instruction might come
into play. What line of C might compile to each of the following?

e Examples:

1. mov $Ox0,%rdx long y = 0O;

2. mov %rdx,%rcx long offset = y;
3. mov $Ox42, (%rdi) arr[0] = 66;

4. mov %rdi,%rcx,8) ,%rax long w = arr[offset];

Indirect addressing is
essentially pointer arithmetic
and dereference.

2

¢/

17

Extra Practice 1

Fill in the blank to complete the C code that
1. mystery line compiles to this assembly
int x = ... 2. registers hold these values

int *ptr = malloc(..);

mov %ecx, (%rax)

__ _ Try subbing in <x> and <ptr>
oo el ot e with actual values, like 4

%ecx %~ rax and Ox7fff80

18

Extra Practice 1

Fill in the blank to complete the C code that

int x = ...
int *ptr = malloc(..);

??? = ??? *ptr = x;

mov %ecx, (%rax)

%ecx %~ rax
19

Extra Practice 2

Fill in the blank to complete the C code that 1. generates this assembly
2. results in this register layout

long *arr = malloc(..);

long num = 227

mov (%rdi, %rcx, 8),%rax

<val of num> <val of arr>

%rax %Trcx %rdi

Extra Practice 2

Fill in the blank to complete the C code that 1. generates this assembly
2. results in this register layout

long *arr = malloc(..);

long num = arr[3];
long num = *(arr + 3);

S G P long num

assume long y = 3;
declared earlier

mov (%rdi, %rcx, 8),%rax

<val of num> <val of arr>

%rax %Trcx %rdi
21

Extra Practice 3

Fill in the blank to complete the C code that 1. generates this assembly
2. has this register layout

char *str = malloc(..);
long i = 2;
?P? = 'c';

J

movb $0x63, (%rcx,%srdx,1)

%Trcx %rdx

Extra Practice 3

Fill in the blank to complete the C code that 1. generates this assembly
2. has this register layout

char *str = malloc(..);
long i = 2;
?P? = 'c';

J

movb $0x63, (%rcx,%srdx,1)

%Trcx %rdx

str[i] = 'c';
*(str + 1) = 'c';

23

Bonus: Sheak peek into next week

* The below code is the objdump of a C function, foo.
» foo keeps its 15t and 2" parameters are in registers %rdi and %rsi, respectively.

©x4005b6 <foo> mov (%rdi),%rax 42
Ox4005b9 <foo+3> mov (%rsi),%rdx 1000

Ox4005bc <foo+6> mov %rdx, (%rdi)
Ox4005bf <foo+9> mov %rax, (%rsi)

‘ 8 bytes g

1. What does this function do? ox7fffe868 Ox7fffe870

2. What C code could have %rdi %rsi
generated this assembly?

(Hints: make up C variable names as 1000

needed, assume all regs 64-bit) o%rax % rdx
(s} (o] ’

24

Bonus: Sheak peek into next week

* The below code is the objdump of a C function, foo.
» foo keeps its 15t and 2" parameters are in registers %rdi and %rsi, respectively.

0x4005b6 <foo> mov (%rdi),%rax 1000
Ox4005b9 <foo+3> mov (%rsi),%rdx 20

Ox4005bc <foo+6> mov %rdx, (%rdi)
Ox4005bf <foo+9> mov %rax, (%rsi)

‘ 8 bytes

long a = *xp; %rd| %rs.
long b = *yp;

%rax %rdx

*Xp = b;

25

