CS107 Lecture 16

Assembly: Arithmetic and Logic Operations

Reading: B&O 3.5-3.6

This document is copyright (C) Stanford Computer Science, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan, Nick Troccoli, and others.

Data Sizes: Not Everything is Eight Bytes

Data sizes in assembly use slightly different names.
* Abyteis 1 byte.
 Aword is 2 bytes.

On early x86 processors, a "word" referred to the natural register size
of 16 bits. 32-bit and 64-bit architectures retained the association—
word and two bytes became synonymous—and introduced "double

word" and "quad word" as extensions to the word.

 Adouble word is 4 bytes.
* Aquad word is 8 bytes.

Assembly instructions—most often mov, but others as well—use suffixes to
specify the size of the data being moved or manipulated.

* b means byte Examples:
movb $0x41, %al
* W means word subb 81, (%rax)
xorw %dx, %dx
* L means double word leaq (%rdi,%rsi,8), %rax

ush %rb
« g means quad word PHSTA T PP ,

Registers and Subregisters

Bit: 63 31 15 7 0
%rax %eax %ax %al
%rbx %ebx %bx %bl
%rcx %ecx %CX %cl
%rdx %edx %dx %d1

* The 64-bit registers use an r-prefix: %rax, %rbx, %rcx, %rdx, and so on.

» The lower portions reuse older names: the low 32 bits use an e-prefix (%eax), the low 16 bits use
the original names (%ax), and the low 8 bits use an l-suffix (%al).

» The same subdivision applies to the other general-purpose registers (%rs1i, %rd1i, %rbp, %rsp,
%r8-%r15): each has 64-, 32-, 16-, and 8-bit names that refer to the same underlying register.

* These aren’t separate registers, but different views into the same 64-bit register. 3

Taking Prefix and Suffixes to Heart

mov can take an optional suffix (b/w/1/q) to specify the size of the move:
movb, movw, mov1l, movq

* The optional suffix can be omitted if the size of the data transfer is implied
by one or both arguments, e.g., mov $0x0, %al or mov %ebx, %edx

* mov only updates the specific register bytes or memory locations indicated.

» Exception: Writing to a 32-bit register (e.g.,movl %ebx,%eax) clears the upper 32
bits of the corresponding 64-bit register (e.g., %rax)

Examples:
movb $Oxff, %bl movb $0x1, (%rcx)
movl (%rsp,%rdx,4), %edx movqg $5, 8(%rsp)
movq (%rdx), %rax movw $0x44, (%rax, %rbp, 4)
The above mov instruction could have The suffix is absolutely required in situations
omitted the suffixes, as the destination where immediates are written out to memory,

implies data size. since memory operands have no size.

Big From Small: movz and movs

Two mov instructions are generally used to copy from a smaller source to a
larger destination: movz and movs

* movz fills the remaining bytes with zeros

movzbl %al, %eax # zero extend, 8 -> 32

Examples: .
P movzwq (%rdi), %rax # zero extend, 16 -> 64

* movs fills the remaining bytes by sign-extending the most significant bit of
the source

movsbl %al, %eax. # sign extend, 8 -> 32

Examples: . .
P movzwq (%rdi), %rax # sign extend, 16 -> 64

* And yes, these mnemonics encode both the source and destination sizes, e.g.,
movzb | = byte-to-long, movswq = word-to-quad

* The source must be memory or a register, and destination must be a register

Exhaustive List: movz

movz S,D D « ZeroExtend(S)

movzbw Move zero-extended byte to word
movzbl Move zero-extended byte to double word
movzwl Move zero-extended word to double word
movzbq Move zero-extended byte to quad word
movzwdq Move zero-extended word to quad word

Exhaustive List: movs

movs S,D D ¢« SignExtend(S)

movsbw Move sign-extended byte to word
movsbl Move sign-extended byte to double word
movswl Move sign-extended word to double word
movsbq Move sign-extended byte to quad word
movswq Move sign-extended word to quad word
movslq Move sign-extended double word to quad word
cltqg Sign-extend %eax in place to fill %6rax

Why the dedicated, in-place sign extender? @

Well, signed division—as we’ll see shortly—requires the dividend be sign-extended to the full register width. cltq
provides a compact, lickety-split way to extend the 32-bit value in %eax to occupy the full 64 bits of %rax.
Compact? How so? cltqis encodedina v single byte ¥ —ox9s.

Baby’s First Assembly

int sum_array(int arr[], int nelems) {
int sum = 0; More of our first obj dump makes sense now.

for (int i = 0; i < nelems; i++) { ° We see that a sign extended copy of 1—backed by
sum += arr[i]; %eax—is written to %rcx.
1 * Why do that? Because memory operands can
only be framed in terms of 64-bit registers.
* Even though you don’t formally know about add yet,
¥ you see this one here relies on one of the advanced
addressing modes to fetcharr[1i].

return sum;

0000000000401136 <sum_array>:

401136: b8 00 00 00 0606 mov SOx0,%eax

40113b: ba 00 00 00 00 mov SOx0,%edx

401140: 39 fo cmp %esi ,%eax
SR/To s 7% KSR, 2 N 1 - SO ey — 40114f-<sum-array+0x19>
. 401144: 48 63 c8 movslq %eax,%rcx |
..a01147: 3 14 8f add (%] %rdi,%rcx,4),%edx

40114a: 83 cO 01 add $Ox1,%eax

40114d: eb f1 jmp 401140 <sum_array+0xa>

40114f: 89 do mov %edx ,%eax

401151: c3 retq 8

The 1ea Instruction

The lea instruction loads an effective address into a destination without
accessing memory.

lea src, dst

Unlike mov, which copies data from the location identified by src to dst,
lea copies the computed address described by srctodst. src mustbea
memory-style address expression and dst must be a register.

Examples:

i lea 8(%rsp), %rax # rax = rsp + 8

i lea (%rdi,%rsi), %rax # rax = rdi + rsi

i lea 16(%rdi,%rsi,4), %rax # rax = rdi + 4 x rsi + 16
' lea -0x20(%rbp,%rcx,8), %rl0® # rl1l0® = rbp + 8 * rcx - 32

Competing Narratives: Lea and mov

The lea instruction loads an effective address into a destination without
accessing memory.

movslq 4(%rsi,%rcx,8), %rbx lea 4(%rsi,%rcx,8), %rbx
Narrative: Go to address %rsi + 8 x %¥rcx + 4 in Narrative: Compute %rsi + 8 * %rcx + 4 and
memory, grab the four bytes stored there, and place place the resultinto %rbx. Do so without
a sign-extended version into %rbx. dereferencing or otherwise accessing memory.

Assuming this type definition:
struct fract { int numj int denom; };

gcc might emit the above on behalf of gcc might emit the above on behalf of
long d = fractions[i].denom; long *ptr = &fractions[i].denom;

Cool, useful Trivia: Lea is often used for elementary school arithmetic because it computes addresses without

touching memory. Because nothing’s ever dereferenced, the "addresses" don’t have to be real memory addresses. 0

Special Purpose Registers

Some registers take on special responsibilities during program execution.
» %rax typically stores the return value
* %rd1 stores the first parameter passed to a function
* %rsi stores the second parameter passed to a function
» %rdx stores the third parameter passed to a function

’ ’ ’, . . What are you doing
* %rcx, %r8, and %r9 store parameters four, five, and six creating functions

» Additional parameters beyond a sixth aren’t passed in registers with seven or more
parameters, though?

» %rip stores the address of the next instruction to execute
* %rsp points to the top of the current stack frame

11

Reverse Engineering Etude

Examine the assembly code emitted on behalf of the dolores_park
function and reconstruct an equivalent, two-line implementation in C.

Recall that the first three parameters are supplied via %rd1i, %rsi, and %rdx, and the
return value is placed in %rax just before exit.

__ Key Insights:
Assembly: dolores_park: * The second line of assembly writes the contents of %rax to the
! leaq (%rsi,%rdx,2), %rax | address stored in %rd1.
movq %rax, (%rdi) § » %rdi storesarr,solinelislikelyarr[0] = <expr>.
movq (%rdi,%rsi,8), %rax | + Since %rsi and %rdx store the values of x and y, it looks
subqg %rdx, %rax like Leais being leveraged to compute x + 2 x y.
ret .« Line3placesarr[x] into %rax as if it’s the return value.

* Line 4, however, quickly subtracts y from %rax before returning.

C:Elong dolores_park(long arr[], long x, long y) {E
arr[0] = x + 2 x y; |
return arr[x] - vy;

12

Math: Unary and Binary Operators

The following instructions operate on a single operand (register or memory):

Instruction Effect Description Examples:
inc D D«D+1 Increment Cinc %rax 4 rax+t
dec D D«D-1 Decrement decq 8(%rsi) # arr[1]-- :
' negq (%rbx,%rcx,8) # arr[k] *= -1 |
_ N !) ’ .
neg D D « -D egate incq (%rdd) B (kp)++ ,
not D D « ~D Complement |

These instructions operate on two operands. At most one of the operands can be a memory location, and the
source can be an immediate. Note the destination is also the first of the two arguments.

Instruction Effect Description Examples:

add S, D DeD+S Add ‘add %rsi, wrax # rax += rsi |
sub S, D D«D-S Subtract - subq %rax, 8(%rdi) # p[1] -= rax |
. Cimulg $4, (%rsi,%rdx,8) # i1 *= 4 |
imul S, D D« D %S Multiply ijmu 3 75 o(, rsi,srdx,8) arriyl ’

| Xor %eax, %eax # eax to O

xor S, D D«DAMS Exclusive-or or $1, %rax # 1sb to 1 .
or S, D DeD| S or ‘andq $-8, %rsp # align to 8
and S, D D«D&S And 13

Bitwise Shift Instructions

Shift instructions have two operands: shift amount k and shiftee D.
k can be an immediate or the byte register %cl (and only that register)

Examples:
Instruction Effect Description shl $1, %rax 4 multiply by 2
sal k, D D « D << k Left shift ' shr $2, %rbx # unsigned divide by 4
e 1 ' sar $5, %rcx # signed divide by 32 |
shl k, D D « D << k Left shift (i.e., sa'l) 'sarq $3, 8(%rdi) # signed arr[1] /= 8
sar k, D D« D >, k Arithmetic right shift 'mov %rsi, %rcx # stage shift amount
' shl %cl, %ra # rax <<= rsi i
shr k, D D« D > k Logical right shift R . o Fre ot]

With %cl, the width of the shiftee determines which part of %cl matters.
For a w-bit shiftee, the low-order Log,w bits of %c1 determine the shift amount.
If %cL = Oxff, shlb shifts by 7 because the lowest log, 8 = 3 bits of Oxff are 6b111 =7.
shlw shifts by 15 because the lowest log, 16 =4 bits of Oxff are 6b1111 =15.

14

