
1
This document is copyright (C) Stanford Computer Science, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan, Nick Troccoli, and others.

CS107 Lecture 16
Assembly: Arithmetic and Logic Operations

Reading: B&O 3.5-3.6

2

Data sizes in assembly use slightly different names.
• A byte is 1 byte.
• A word is 2 bytes.
• A double word is 4 bytes.
• A quad word is 8 bytes.

Assembly instructions—most often mov, but others as well—use suffixes to
specify the size of the data being moved or manipulated.

• b means byte
• w means word
• l means double word
• q means quad word

Data Sizes: Not Everything is Eight Bytes

On early x86 processors, a "word" referred to the natural register size
of 16 bits. 32-bit and 64-bit architectures retained the association—
word and two bytes became synonymous—and introduced "double

word" and "quad word" as extensions to the word.

movb $0x41, %al
subb $1, (%rax)
xorw %dx, %dx
leaq (%rdi,%rsi,8), %rax
pushq %rbp

Examples:

3

Registers and Subregisters
Bit: 63 071531

%rax %eax %ax %al

%rbx %ebx %bx %bl

%rcx %ecx %cx %cl

%rdx %edx %dx %dl

• The 64-bit registers use an r-prefix: %rax, %rbx, %rcx, %rdx, and so on.
• The lower portions reuse older names: the low 32 bits use an e-prefix (%eax), the low 16 bits use

the original names (%ax), and the low 8 bits use an l-suffix (%al).
• The same subdivision applies to the other general-purpose registers (%rsi, %rdi, %rbp, %rsp,
%r8–%r15): each has 64-, 32-, 16-, and 8-bit names that refer to the same underlying register.

• These aren’t separate registers, but different views into the same 64-bit register.

4

Taking Prefix and Suffixes to Heart

mov can take an optional suffix (b/w/l/q) to specify the size of the move:
movb, movw, movl, movq

• The optional suffix can be omitted if the size of the data transfer is implied
by one or both arguments, e.g., mov $0x0, %al or mov %ebx, %edx
• mov only updates the specific register bytes or memory locations indicated.

• Exception: Writing to a 32-bit register (e.g., movl %ebx,%eax) clears the upper 32
bits of the corresponding 64-bit register (e.g., %rax)

Examples:

movb $0xff, %bl
movl (%rsp,%rdx,4), %edx
movq (%rdx), %rax

movb $0x1, (%rcx)
movq $5, 8(%rsp)
movw $0x44, (%rax, %rbp, 4)

The above mov instruction could have
omitted the suffixes, as the destination

implies data size.

The suffix is absolutely required in situations
where immediates are written out to memory,

since memory operands have no size.

5

Big From Small: movz and movs

Two mov instructions are generally used to copy from a smaller source to a
larger destination: movz and movs
• movz fills the remaining bytes with zeros

• movs fills the remaining bytes by sign-extending the most significant bit of
the source

• And yes, these mnemonics encode both the source and destination sizes, e.g.,
movzbl = byte-to-long, movswq = word-to-quad

• The source must be memory or a register, and destination must be a register

Examples: movzbl %al, %eax # zero extend, 8 -> 32
movzwq (%rdi), %rax # zero extend, 16 -> 64

Examples: movsbl %al, %eax. # sign extend, 8 -> 32
movzwq (%rdi), %rax # sign extend, 16 -> 64

6

Exhaustive List: movz

Instruction Description

movzbw Move zero-extended byte to word

movzbl Move zero-extended byte to double word

movzwl Move zero-extended word to double word

movzbq Move zero-extended byte to quad word

movzwq Move zero-extended word to quad word

movz S,D D ← ZeroExtend(S)

7

Instruction Description

movsbw Move sign-extended byte to word

movsbl Move sign-extended byte to double word

movswl Move sign-extended word to double word

movsbq Move sign-extended byte to quad word

movswq Move sign-extended word to quad word

movslq Move sign-extended double word to quad word

cltq Sign-extend %eax in place to fill %rax

movs S,D D ← SignExtend(S)

Exhaustive List: movs

Why the dedicated, in-place sign extender?
Well, signed division—as we’ll see shortly—requires the dividend be sign-extended to the full register width. cltq

provides a compact, lickety-split way to extend the 32-bit value in %eax to occupy the full 64 bits of %rax.
Compact? How so? cltq is encoded in a ❤ single byte ❤ —0x98.

8

Baby’s First Assembly

int sum_array(int arr[], int nelems) {
 int sum = 0;
 for (int i = 0; i < nelems; i++) {
 sum += arr[i];
 }
 return sum;
}

0000000000401136 <sum_array>:
 401136: b8 00 00 00 00 mov $0x0,%eax
 40113b: ba 00 00 00 00 mov $0x0,%edx
 401140: 39 f0 cmp %esi,%eax
 401142: 7d 0b jge 40114f <sum_array+0x19>
 401144: 48 63 c8 movslq %eax,%rcx
 401147: 03 14 8f add (%rdi,%rcx,4),%edx
 40114a: 83 c0 01 add $0x1,%eax
 40114d: eb f1 jmp 401140 <sum_array+0xa>
 40114f: 89 d0 mov %edx,%eax
 401151: c3 retq

More of our first objdump makes sense now.
• We see that a sign extended copy of i—backed by

%eax—is written to %rcx.
• Why do that? Because memory operands can

only be framed in terms of 64-bit registers.
• Even though you don’t formally know about add yet,

you see this one here relies on one of the advanced
addressing modes to fetch arr[i].

9

The lea Instruction

The lea instruction loads an effective address into a destination without
accessing memory.
lea src, dst

Unlike mov, which copies data from the location identified by src to dst,
lea copies the computed address described by src to dst. src must be a

memory-style address expression and dst must be a register.
Examples:

lea 8(%rsp), %rax # rax = rsp + 8
lea (%rdi,%rsi), %rax # rax = rdi + rsi
lea 16(%rdi,%rsi,4), %rax # rax = rdi + 4 * rsi + 16
lea -0x20(%rbp,%rcx,8), %r10 # r10 = rbp + 8 * rcx - 32

10

Competing Narratives: lea and mov

The lea instruction loads an effective address into a destination without
accessing memory.

movslq 4(%rsi,%rcx,8), %rbx lea 4(%rsi,%rcx,8), %rbx

Narrative: Go to address %rsi + 8 * %rcx + 4 in
memory, grab the four bytes stored there, and place

a sign-extended version into %rbx.

Narrative: Compute %rsi + 8 * %rcx + 4 and
place the result into %rbx. Do so without

dereferencing or otherwise accessing memory.

Assuming this type definition:
struct fract { int num; int denom; };

gcc might emit the above on behalf of
long d = fractions[i].denom;

gcc might emit the above on behalf of
long *ptr = &fractions[i].denom;

Cool, useful Trivia: lea is often used for elementary school arithmetic because it computes addresses without
touching memory. Because nothing’s ever dereferenced, the "addresses" don’t have to be real memory addresses.

11

Special Purpose Registers

Some registers take on special responsibilities during program execution.
• %rax typically stores the return value
• %rdi stores the first parameter passed to a function
• %rsi stores the second parameter passed to a function
• %rdx stores the third parameter passed to a function
• %rcx, %r8, and %r9 store parameters four, five, and six

• Additional parameters beyond a sixth aren’t passed in registers

• %rip stores the address of the next instruction to execute
• %rsp points to the top of the current stack frame

What are you doing
creating functions

with seven or more
parameters, though?

12

Reverse Engineering Etude

Examine the assembly code emitted on behalf of the dolores_park
function and reconstruct an equivalent, two-line implementation in C.

Recall that the first three parameters are supplied via %rdi, %rsi, and %rdx, and the
return value is placed in %rax just before exit.

dolores_park:
 leaq (%rsi,%rdx,2), %rax
 movq %rax, (%rdi)
 movq (%rdi,%rsi,8), %rax
 subq %rdx, %rax
 ret

long dolores_park(long arr[], long x, long y) {
 arr[0] = x + 2 * y;
 return arr[x] – y;
}

Assembly:

C:

Key Insights:
• The second line of assembly writes the contents of %rax to the

address stored in %rdi.
• %rdi stores arr, so line 1 is likely arr[0] = <expr>.
• Since %rsi and %rdx store the values of x and y, it looks

like lea is being leveraged to compute x + 2 * y.
• Line 3 places arr[x] into %rax as if it’s the return value.
• Line 4, however, quickly subtracts y from %rax before returning.

13

Math: Unary and Binary Operators
The following instructions operate on a single operand (register or memory):

These instructions operate on two operands. At most one of the operands can be a memory location, and the
source can be an immediate. Note the destination is also the first of the two arguments.

Instruction Effect Description
inc D D ← D + 1 Increment

dec D D ← D - 1 Decrement

neg D D ← -D Negate

not D D ← ~D Complement

inc %rax # rax++
decq 8(%rsi) # arr[1]--
negq (%rbx,%rcx,8) # arr[k] *= -1
incq (%rdi) # (*p)++

Examples:

Instruction Effect Description
add S, D D ← D + S Add
sub S, D D ← D - S Subtract
imul S, D D ← D * S Multiply
xor S, D D ← D ^ S Exclusive-or
or S, D D ← D | S Or
and S, D D ← D & S And

add %rsi, %rax # rax += rsi
subq %rax, 8(%rdi) # p[1] -= rax
imulq $4, (%rsi,%rdx,8) # arr[j] *= 4
xor %eax, %eax # eax to 0
or $1, %rax # lsb to 1
andq $-8, %rsp # align to 8

Examples:

14

Bitwise Shift Instructions

Shift instructions have two operands: shift amount k and shiftee D.
k can be an immediate or the byte register %cl (and only that register)

With %cl, the width of the shiftee determines which part of %cl matters.

For a w-bit shiftee, the low-order log2w bits of %cl determine the shift amount.

If %cl = 0xff, shlb shifts by 7 because the lowest log2 8 = 3 bits of 0xff are 0b111 = 7.

shlw shifts by 15 because the lowest log2 16 = 4 bits of 0xff are 0b1111 = 15 .

Instruction Effect Description

sal k, D D ← D << k Left shift

shl k, D D ← D << k Left shift (i.e., sal)

sar k, D D ← D >>A k Arithmetic right shift

shr k, D D ← D >>L k Logical right shift

shl $1, %rax # multiply by 2
shr $2, %rbx # unsigned divide by 4
sar $5, %rcx # signed divide by 32
sarq $3, 8(%rdi) # signed arr[1] /= 8
mov %rsi, %rcx # stage shift amount
shl %cl, %rax # rax <<= rsi

Examples:

