
1
This document is copyright (C) Stanford Computer Science, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan, Nick Troccoli, and others.

CS107 Lecture 17
Assembly: Arithmetic and Logic Wrap, Control Flow

Reading: B&O 3.5-3.6

2

Multiplication Support

Multiplying 64-bit numbers can produce 128-bit results. How does x86-64
support this with only 64-bit registers?

• If you specify two operands to imul or mul, it multiplies them and truncates the result to
fit in the second of the two.

imul S, D is realized as D ← D * S
• If you specify one operand, it’s multiplied by %rax and the product is split across two

registers: the high-order 64 bits go in %rdx and the low-order 64 bits in %rax.

Instruction Effect Description

imulq S R[%rdx]:R[%rax] ← S x R[%rax] Signed full multiply

mulq S R[%rdx]:R[%rax] ← S x R[%rax] Unsigned full multiply

3

Division and Mod Support
x86-64 supports dividing a 128-bit value by a 64-bit value.

• The high-order 64 bits of the dividend need to be prepared and stored in %rdx, the low-
order 64 bits in %rax. The divisor is the only listed operand.

• The integer quotient is stored in %rax, and the remainder in %rdx.

• Most dividend are just 64-bit. The cqto instruction sign-extends the 64-bit value in
%rax though %rdx to fill both registers with the dividend, as idiv and div expect.

Instruction Effect Description

idivq S R[%rdx] ← R[%rdx]:R[%rax] mod S;
R[%rax] ← R[%rdx]:R[%rax] ➗ S

Signed divide

divq S R[%rdx] ← R[%rdx]:R[%rax] mod S;
R[%rax] ← R[%rdx]:R[%rax] ➗ S

Unsigned divide

cqto R[%rdx]:R[%rax] ← SignExtend(R[%rax]) Convert to oct word

4

Reverse Engineering Etude
Examine the assembly code emitted on behalf of the three-argument
div_and_mod function and reconstruct an equivalent, four-line

implementation in C.

div_and_mod:
 movq %rdi, %rax
 movq %rdx, %rcx
 cqto
 idivq %rsi
 movq %rdx, (%rcx)
 ret

long div_and_mod(long x, long y, long *p_mod) {
 long quotient = x / y;
 long remainder = x % y;
 *p_mod = remainder;
 return quotient;
}

Assembly:

C:

Key Insights:
• The first and third lines of assembly suggest x—delivered via %rdi—

is the dividend of the forthcoming division.
• The second line stores a copy of p_mod (courtesy of %rdx) in %rcx.
• The fourth line divides x by y (supplied via %rsi), populating %rax

with the integer quotient and %rdx with the remainder.
• This explains why a copy of p_mod was placed in %rcx—the compiler recognized

%rdx would be overwritten by idivq two lines later.
• The remainder is written through the

address stored in %rcx, suggesting
*p_mod = x % y

• %rax still holds the integer quotient
when the function returns, suggesting
something akin to return x / y

5

Reverse Engineering Etude 1
Examine the assembly code emitted on behalf of the three-argument
div_and_mod function and reconstruct an equivalent, four-line

implementation in C.

div_and_mod:
 movq %rdi, %rax
 movq %rdx, %rcx
 cqto
 idivq %rsi
 movq %rdx, (%rcx)
 ret

long div_and_mod(long x, long y, long *p_mod) {
 long quotient = x / y;
 long remainder = x % y;
 *p_mod = remainder;
 return quotient;
}

Assembly:

C:

Key Insights:
• The first and third lines of assembly suggest x—delivered via %rdi—

is the dividend of the forthcoming division.
• The second line stores a copy of p_mod (courtesy of %rdx) in %rcx.
• The fourth line divides x by y (supplied via %rsi), populating %rax

with the integer quotient and %rdx with the remainder.
• This explains why a copy of p_mod was placed in %rcx—the compiler recognized

%rdx would be overwritten by idivq two lines later.
• The remainder is written through the

address stored in %rcx, suggesting
*p_mod = x % y

• %rax still holds the integer quotient
when the function returns, suggesting
something akin to return x / y

6

Reverse Engineering Etude
Examine the assembly code emitted on behalf of the three-argument

tinker_toy function and complete the implementation.

tinker_toy:
 movslq %edx, %rdx
 movl %edi, %eax
 addl (%rsi,%rdx,4), %eax
 ret

int tinker_toy(int x, int arr[], int y) {
 int sum = __________;
 sum += arr[__________];
 return __________;
}

Assembly:

C:

Key Insights:
• Because the third argument y is an int, it’s really passed in

%edx, and the upper half of %rdx is irrelevant garbage.
• However, a sign-extended copy of y is placed in %rdx via the

first instruction, since the addressing mode of the third line
requires full registers. %edx itself doesn’t qualify.

• Because sum is declared as an int and is the
focus of the implementation, it’s reasonable
to assume sum is backed by %eax and that its
final value is what’s returned.

• The second line initializes sum to x, and the
third adds arr[y] to sum. Note the scale
factor in line three is a 4, and that’s what
you’d expect with int * pointer arithmetic.

sum

x
y

7

Executing Instructions

So far:
• Program values can be stored in memory or in registers.
• Assembly instructions read and write values back and

forth between registers and main memory.
• Assembly instructions are also stored in memory.

Big Questions:
• What controls execution flow? How does a process know

what instruction to execute next?
Answer:
• The program counter, stored in %rip.

4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

8

Following %rip

00000000004004ed <loop>:
 4004ed: 55 push %rbp
 4004ee: 48 89 e5 mov %rsp,%rbp
 4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
 4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
 4004fc: eb fa jmp 4004f8 <loop+0xb>

4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

Heap

Stack

Data

Text (code)

Main Memory

9

Following %rip

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

0x4004ed

%rip

In x86-64, %rip serves as the
program counter and holds

the address of the next
instruction to be executed.

10

Following %rip 4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

0x4004ee

%rip

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

In x86-64, %rip serves as the
program counter and holds

the address of the next
instruction to be executed.

11

Following %rip 4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

0x4004f1

%rip

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

In x86-64, %rip serves as the
program counter and holds

the address of the next
instruction to be executed.

12

Following %rip 4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

0x4004f8

%rip

In x86-64, %rip serves as the
program counter and holds

the address of the next
instruction to be executed.

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

13

Following %rip 4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

0x4004fc

%rip

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

In x86-64, %rip serves as the
program counter and holds

the address of the next
instruction to be executed.

14

Following %rip 4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

0x4004fc

%rip

Normally, dedicated hardware
sets the program counter to the

address of the next instruction:
%rip += current instruction size

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

15

Interrupting Control Flow 4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

0x4004fc

%rip

The jmp instruction is an
unconditional jump that sets

the program counter to the
jump target (the operand).

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

16

Interrupting Control Flow 4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

0x4004f8

%rip

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

The jmp instruction is an
unconditional jump that sets

the program counter to the
jump target (the operand).

17

Interrupting Control Flow 4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

0x4004fc

%rip

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

The jmp instruction is an
unconditional jump that sets

the program counter to the
jump target (the operand).

18

Interrupting Control Flow 4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

0x4004f8

%rip

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

The jmp instruction is an
unconditional jump that sets

the program counter to the
jump target (the operand).

The above might reverse compile to: int n = 0;
while (true) n++;
...

19

The jmp Instruction

The jmp instruction jumps to another instruction in the assembly
code—an unconditional jump.

jmp Label (Direct Jump)
jmp *Operand (Indirect Jump)

The single operand can be encoded directly
into the instruction as a direct jump:
 jmp 404f8 <loop+0xb>
The operand can be expressed as an indirect
jump using one of the many addressing modes
 jmp *%rax

Aside: Direct, unconditional jumps
are frequently used for loopbacks in
for and while loops and for skipping

around else blocks.

Another Aside: Indirect unconditional
jumps are much less common, used on
behalf of very large switch statements

and function pointers.

Next Question: What if we want to
jump conditionally?

