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Multiplication Support

Multiplying 64-bit numbers can produce 128-bit results. How does x86-64
support this with only 64-bit registers?

* If you specify two operands to imul or mul, it multiplies them and truncates the result to
fitin the second of the two.

imul S, D isrealizedas D « D * S

* If you specify one operand, it’s multiplied by %rax and the product is split across two
registers: the high-order 64 bits go in %rdx and the low-order 64 bits in %rax.

Instruction Effect Description
imulg S R[%rdx]:R[%rax] « S x R[%rax] Signed full multiply
mulg S R[%rdx]:R[%rax] « S x R[%rax] Unsigned full multiply




Division and Mod Support

Xx86-64 supports dividing a 128-bit value by a 64-bit value.

Instruction Effect Description

idivg S R[%rdx] ¢« R[%rdx]:R[%rax] mod S; Signed divide
R[%rax] <« R[%rdx]:R[%rax] = S

divg S R[%rdx] « R[%rdx]:R[%rax] mod S; Unsigned divide
R[%rax] ¢« R[%rdx]:R[%rax] = S

cqto R[%rdx]:R[%rax] ¢« SignExtend(R[%rax]) Convert to oct word

* The high-order 64 bits of the dividend need to be prepared and stored in %rdx, the low-
order 64 bits in %rax. The divisor is the only listed operand.

* The integer quotient is stored in %rax, and the remainder in %rdx.

* Most dividend are just 64-bit. The cqto instruction sign-extends the 64-bit value in
%rax though %rdx to fill both registers with the dividend, as idiv and div expect.



Reverse Engineering Etude

Examine the assembly code emitted on behalf of the three-argument
div_and_mod function and reconstruct an equivalent, four-line
implementationin C.

Assembly: | d'| v_and_mod: . Key Insights:
- movq %rdi, %rax .+ Thefirst and third lines of assembly suggest x—delivered via %rdi—
movq %rdx, %rcx is the dividend of the forthcoming division.
cqto -+ Thesecond line stores a copy of p_mod (courtesy of %rdx) in %rcx.
idivq %rsi -+ Thefourth line divides x by y (supplied via %rs1), populating %rax
movq %rdx, (%rcx) with the integer quotient and %rdx with the remainder.
ret | * This explains why a copy of p_mod was placed in %rcx—the compiler recognized

i : %rdx would be overwritten by idivqtwo lines later.

C: long div_and_mod(long x, long y, long *p_mod) { The remainder is written through the
. address stored in %rcx, suggesting

long quotient = x / vy;

long remainder = x % - xp_mod = x %y
5 ~ . ° Y5 e %rax still holds the integer quotient
*p_mod = remainder; .

| return quotient; i when the fun.ctlon returns, suggesting
} . something akintoreturn x / y
. i 4



Reverse Engineering Etude 1

Examine the assembly code emitted on behalf of the three-argument
div_and_mod function and reconstruct an equivalent, four-line
implementationin C.

Assembly: | d'| v_and_mod: . Key Insights:
- movq %rdi, %rax .+ Thefirst and third lines of assembly suggest x—delivered via %rdi—
movq %rdx, %rcx is the dividend of the forthcoming division.
cqto -+ Thesecond line stores a copy of p_mod (courtesy of %rdx) in %rcx.
idivq %rsi -+ Thefourth line divides x by y (supplied via %rs1), populating %rax
movq %rdx, (%rcx) with the integer quotient and %rdx with the remainder.
ret | * This explains why a copy of p_mod was placed in %rcx—the compiler recognized

i : %rdx would be overwritten by idivqtwo lines later.

C: long div_and_mod(long x, long y, long *p_mod) { The remainder is written through the
. address stored in %rcx, suggesting

long quotient = x / vy;

long remainder = x % - xp_mod = x %y
5 ~ . ° Y5 e %rax still holds the integer quotient
*p_mod = remainder; .

| return quotient; i when the fun.ctlon returns, suggesting
} . something akintoreturn x / y
. : 5



Reverse Engineering Etude

Examine the assembly code emitted on behalf of the three-argument
tinker_toy function and complete the implementation.

Key Insights:
e * Because the third argument y isan int, it’s really passed in
Assembly: | tinker_toy: . %edx, and the upper half of %rdx is irrelevant garbage.

’ movslqg %edx, %rdx . * However, a sign-extended copy of y is placed in %rdx via the
movl %edi, %eax . firstinstruction, since the addressing mode of the third line
addl (%rsi,%rdx,4), %eax | requiresfull registers. %edx itself doesn’t qualify.
ret ’

T * Because sumis declared as an int and is the

C: 49nt tinke r_toy(int x, int arr[], int y) { | focus of the implementation, it’s reasonable

' int sum = X____; . toassume sumis backed by %eax and that its
sum += arr[_____ Y ____1; final value is what’s returned.

| return ___sum __ . .+ Thesecond lineinitializes sumto x, and the

'} third adds arr[y] to sum. Note the scale

factorin line threeis a 4, and that’s what
you’d expect with int * pointer arithmetic. g



Executing Instructions

So far:
* Program values can be stored in memory or in registers.

* Assembly instructions read and write values back and
forth between registers and main memory.

* Assembly instructions are also stored in memory.

Big Questions:

» What controls execution flow? How does a process know
what instruction to execute next?

Answer:
e The program counter, stored in %r1ip.

4004fd

4004fc

4004fb

o1

4004fa

fc

400419

45

400418

83

400417

00

4004f6

00

400415

00

400414

00

400413

fc

400412

45

400411

c7

4004ed

55




00000000004004ed <loop>:

4004ed:

4004F1:
400418
4004fc:

55

c7 45 fc 00 00 0O 00
83 45 fc 01
eb fa

push

mov1l
addl
jmp

%rbp

$0x0, -0x4(%rbp)
$0x1, -0x4(%rbp)
400418 <loop+0xb>

4004fd

4004fc

4004fb o1
4004fa | fc
400419 45
40048 83
400417 00
4004f6 00
400415 00
400414 00
400413 fc
400412 45
40041 c7
4004ed 55

Main Memory

Stack

-

Heap

Data

Text (code)

(0] ‘



Following %r-ip

000000004004ed <loop>:
m) 4004ed: 55

4004f1: c7 45 fc 00 00 0O 00O
4004f8: 83 45 fc 01
4004fc: eb fa

In x86-64, %rip serves as the
program counter and holds
the address of the next
instruction to be executed.

push  %rbp

movl  $0x0,-0x4(%rbp)

addl  $0x1,-0x4(%rbp)

jmp 400418 <loop+Oxb>
0x4004ed \

%rip

4004fd

4004fc

4004fb

o1

4004fa

fc

400419

45

400418

83

400417

00

4004f6

00

400415

00

400414

00

400413

fc

400412

45

4004f1

c7

4004ed

55




Following %r-ip

00000000004004ed <loop>:
4004ed: 55

4004f1: c7 45 fc 00 00 0O 00O
4004f8: 83 45 fc 01
4004fc: eb fa

In x86-64, %rip serves as the
program counter and holds
the address of the next
instruction to be executed.

push

mov1l
addl
jmp

%rbp

$0x0, -0x4(%rbp)
$0x1, -0x4(%rbp)
400418 <loop+0xb>

Ox4004ee

%rip

4004fd

4004fc

4004fb

o1

4004fa

fc

400419

45

400418

83

400417

00

4004f6

00

400415

00

400414

00

400413

fc

400412

45

4004f1

c7

4004ed

55
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Following %r-ip

00000000004004ed <loop>:
4004ed: 55 push

» 4004f1: c7 45 fc 00 00 00 00 movl
4004f8: 83 45 fc 01 addl
4004fc: eb fa jmp

In x86-64, %rip serves as the
program counter and holds

%rbp

$0x0, -0x4(%rbp)
$0x1, -0x4(%rbp)
400418 <loop+0xb>

the address of the next

instruction to be executed. ox4004F1

%rip

4004fd

4004fc

4004fb

o1

4004fa

fc

400419

45

400418

83

400417

00

4004f6

00

400415

00

400414

00

400413

fc

400412

45

4004f1

c7

4004ed

55
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Following %r-ip

00000000004004ed <loop>:

4004ed:

4004F1:
B) 4004f8:
4004fc:

55

c7 45 fc 090 00 00 00
83 45 fc 91
eb fa

In x86-64, %rip serves as the
program counter and holds
the address of the next
instruction to be executed.

push  %rbp

movl  $0x0,-0x4(%rbp)
addl  $0x1,-0x4(%rbp)
jmp 400418 <loop+oxy>
0x4004f8

%rip

4004fd

4004fc

4004fb

o1

4004fa

fc

400419

45

400418

83

400417

00

4004f6

00

400415

00

400414

00

400413

fc

400412

45

4004f1

c7

4004ed

55

12



Following %r-ip

00000000004004ed <loop>:
4004ed: 55

4004f1: c7 45 fc 00 00 00 00
400418: 83 45 fc o1
m) 4004fc: eb fa

In x86-64, %rip serves as the
program counter and holds
the address of the next
instruction to be executed.

push  %rbp

movl  $0x0,-0x4(%rbp
addl  $0x1,-0x4(%rbp)
jmp 400418 <loopffoxb>
Ox4004fc

%rip

4004fd

4004fc

4004fb o1
4004fa fc
40049 45
40048 |83
400417 00
400416 00
40045 00
400414 00
40043 fc
400412 45
4004f1 c7
4004ed 55
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Following %r-ip

00000000004004ed <loop>:
4004ed: 55

4004f1: c7 45 fc 00 00 00 00
400418: 83 45 fc o1
m) 4004fc: eb fa

Normally, dedicated hardware
sets the program counter to the

push

mov1l
addl
jmp

address of the next instruction:

%rip +=current instruction size

%rbp

$0x0, -0x4(%rbp
$0x1, -0x4(%rbp)
400418 <loopfoxb>

Ox4004fc

%rip

4004fd

4004fc

4004fb o1
4004fa fc
40049 45
40048 |83
400417 00
400416 00
40045 00
400414 00
40043 fc
400412 45
4004f1 c7
4004ed 55

14



Interrupting Control Flow EZE

4004fc

4004fb 01
00000000004004ed <loop>: 4004fa | fc
4004ed: 55 push  %rbp 4004f9 | 45

40048 83
4004f1: c7 45 fc 00 00 00 00 movl  $0x0,-0x4(%rbp 4004f7 |00
4004f8: 83 45 fc o1 addl  $0x1,-0x4(%rbf) 4004f6 | 00

» 4004fc: eb fa jmp 400418 <loopffoxb> 4004F5 | 00

400414 00

400413 fc

o . . . 40042 45
The Jmp instruction is an 2004t 1<
unconditional jump that sets
the program counter to the
jump target (the operand). Ox4004fC
4004ed 55

%rip .



Interrupting Control Flow Rk

4004fc

4004fb |01
00000000004004ed <loop>: 4004fa | fc
4004ed: 55 push %rbp 4004f9 |45

400418 83

4004f1: c7 45 fc 00 00 00 00 movl  $0x0,-0x4(%rbp) 4004f7 |00

B) 4004f8: 83 45 fc 01 addl  $6x1, -0x4(%rbp) 2004f6 | 00
4004fc: eb fa jmp 400418 <loop+oxy> 10045 | 00
4004f4 |00

4004f3 | fc

4004f2 |45

The jmp instruction is an PP

unconditional jump that sets
the program counter to the

jump target (the operand). Ox4004f8

. 4004ed |55
%rip 16




Interrupting Control Flow EX&

4004fc

4004fb 01
00000000004004ed <loop>: 4004fa | fc
4004ed: 55 push  %rbp 4004f9 | 45

40048 83
4004f1: c7 45 fc 00 00 00 00 movl  $0x0,-0x4(%rbp 4004f7 |00
4004f8: 83 45 fc o1 addl  $0x1,-0x4(%rbf) 4004f6 | 00

» 4004fc: eb fa jmp 400418 <loopffoxb> 4004F5 | 00

400414 00

400413 fc

o . . . 40042 45
The Jmp instruction is an 2004t 1<
unconditional jump that sets
the program counter to the
jump target (the operand). Ox4004fC
4004ed 55

%rip .



Interrupting Control Flow E
4004fc
4004fb 01
00000000004004ed <loop>: 4004fa | fc
4004ed: 55 push  %rbp 4004f9 | 45
400418 83
4004f1: c7 45 fc 00 00 00 00 movl  $0x0,-0x4(%rbp) 4004f7 |00
B) 4004f8: 83 45 fc 01 addl  $ox1,-0x4(%rbp) rooate | oo
4004fc: eb fa jmp 400418 <loop+oxy> 10045 | 00
400414 00
The above might reverse compileto: int n = 0; 1004€3 | fc
while (true) n++;
o . . . 400412 45
The Jmp instruction is an ro0afl | oo
unconditional jump that sets
the program counter to the
jump target (the operand). Ox4004F8
4004ed 55

%rip 18



The jmp Instruction

The jmp instruction jumps to another instruction in the assembly
code—an unconditional jump.

jmp Label (Direct Jump)
jmp *Operand (Indirect Jump)

The single operand can be encoded directly
into the instruction as a direct jump:

jmp 404f8 <loop+0Oxb>

The operand can be expressed as an indirect
jump using one of the many addressing modes

jmp *%rax

____________________________________________________________

Aside: Direct, unconditional jumps
. are frequently used for loopbacks in
. for and while loops and for skipping
| around else blocks. '

Another Aside: Indirect unconditional
- Jumps are much less common, used on |
. behalf of very large switch statements |

and function pointers.

____________________________________________________________

Next Question: What if we want to
jump conditionally?

_____________________________________________________________



