CS107 Lecture 17
Assembly: Arithmetic and Logic Wrap, Control Flow

Reading: B&O 3.5-3.6

This document is copyright (C) Stanford Computer Science, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan, Nick Troccoli, and others.

Multiplication Support

Multiplying 64-bit numbers can produce 128-bit results. How does x86-64
support this with only 64-bit registers?

* If you specify two operands to imul or mul, it multiplies them and truncates the result to
fitin the second of the two.

imul S, D isrealizedas D « D * S

* If you specify one operand, it’s multiplied by %rax and the product is split across two
registers: the high-order 64 bits go in %rdx and the low-order 64 bits in %rax.

Instruction Effect Description
imulg S R[%rdx]:R[%rax] « S x R[%rax] Signed full multiply
mulg S R[%rdx]:R[%rax] « S x R[%rax] Unsigned full multiply

Division and Mod Support

Xx86-64 supports dividing a 128-bit value by a 64-bit value.

Instruction Effect Description

idivg S R[%rdx] ¢« R[%rdx]:R[%rax] mod S; Signed divide
R[%rax] <« R[%rdx]:R[%rax] = S

divg S R[%rdx] « R[%rdx]:R[%rax] mod S; Unsigned divide
R[%rax] ¢« R[%rdx]:R[%rax] = S

cqto R[%rdx]:R[%rax] ¢« SignExtend(R[%rax]) Convert to oct word

* The high-order 64 bits of the dividend need to be prepared and stored in %rdx, the low-
order 64 bits in %rax. The divisor is the only listed operand.

* The integer quotient is stored in %rax, and the remainder in %rdx.

* Most dividend are just 64-bit. The cqto instruction sign-extends the 64-bit value in
%rax though %rdx to fill both registers with the dividend, as idiv and div expect.

Reverse Engineering Etude

Examine the assembly code emitted on behalf of the three-argument
div_and_mod function and reconstruct an equivalent, four-line
implementationin C.

Assembly: | d'| v_and_mod: . Key Insights:
- movq %rdi, %rax .+ Thefirst and third lines of assembly suggest x—delivered via %rdi—
movq %rdx, %rcx is the dividend of the forthcoming division.
cqto -+ Thesecond line stores a copy of p_mod (courtesy of %rdx) in %rcx.
idivq %rsi -+ Thefourth line divides x by y (supplied via %rs1), populating %rax
movq %rdx, (%rcx) with the integer quotient and %rdx with the remainder.
ret | * This explains why a copy of p_mod was placed in %rcx—the compiler recognized

i : %rdx would be overwritten by idivqtwo lines later.

C: long div_and_mod(long x, long y, long *p_mod) { The remainder is written through the
. address stored in %rcx, suggesting

long quotient = x / vy;

long remainder = x % - xp_mod = x %y
5 ~ . ° Y5 e %rax still holds the integer quotient
*p_mod = remainder; .

| return quotient; i when the fun.ctlon returns, suggesting
} . something akintoreturn x / y
. i 4

Reverse Engineering Etude 1

Examine the assembly code emitted on behalf of the three-argument
div_and_mod function and reconstruct an equivalent, four-line
implementationin C.

Assembly: | d'| v_and_mod: . Key Insights:
- movq %rdi, %rax .+ Thefirst and third lines of assembly suggest x—delivered via %rdi—
movq %rdx, %rcx is the dividend of the forthcoming division.
cqto -+ Thesecond line stores a copy of p_mod (courtesy of %rdx) in %rcx.
idivq %rsi -+ Thefourth line divides x by y (supplied via %rs1), populating %rax
movq %rdx, (%rcx) with the integer quotient and %rdx with the remainder.
ret | * This explains why a copy of p_mod was placed in %rcx—the compiler recognized

i : %rdx would be overwritten by idivqtwo lines later.

C: long div_and_mod(long x, long y, long *p_mod) { The remainder is written through the
. address stored in %rcx, suggesting

long quotient = x / vy;

long remainder = x % - xp_mod = x %y
5 ~ . ° Y5 e %rax still holds the integer quotient
*p_mod = remainder; .

| return quotient; i when the fun.ctlon returns, suggesting
} . something akintoreturn x / y
. : 5

Reverse Engineering Etude

Examine the assembly code emitted on behalf of the three-argument
tinker_toy function and complete the implementation.

Key Insights:
e * Because the third argument y isan int, it’s really passed in
Assembly: | tinker_toy: . %edx, and the upper half of %rdx is irrelevant garbage.

’ movslqg %edx, %rdx . * However, a sign-extended copy of y is placed in %rdx via the
movl %edi, %eax . firstinstruction, since the addressing mode of the third line
addl (%rsi,%rdx,4), %eax | requiresfull registers. %edx itself doesn’t qualify.
ret ’

T * Because sumis declared as an int and is the

C: 49nt tinke r_toy(int x, int arr[], int y) { | focus of the implementation, it’s reasonable

' int sum = X____; . toassume sumis backed by %eax and that its
sum += arr[_____ Y ____1; final value is what’s returned.

| return ___sum __ . .+ Thesecond lineinitializes sumto x, and the

'} third adds arr[y] to sum. Note the scale

factorin line threeis a 4, and that’s what
you’d expect with int * pointer arithmetic. g

Executing Instructions

So far:
* Program values can be stored in memory or in registers.

* Assembly instructions read and write values back and
forth between registers and main memory.

* Assembly instructions are also stored in memory.

Big Questions:

» What controls execution flow? How does a process know
what instruction to execute next?

Answer:
e The program counter, stored in %r1ip.

4004fd

4004fc

4004fb

o1

4004fa

fc

400419

45

400418

83

400417

00

4004f6

00

400415

00

400414

00

400413

fc

400412

45

400411

c7

4004ed

55

00000000004004ed <loop>:

4004ed:

4004F1:
400418
4004fc:

55

c7 45 fc 00 00 0O 00
83 45 fc 01
eb fa

push

mov1l
addl
jmp

%rbp

$0x0, -0x4(%rbp)
$0x1, -0x4(%rbp)
400418 <loop+0xb>

4004fd

4004fc

4004fb o1
4004fa | fc
400419 45
40048 83
400417 00
4004f6 00
400415 00
400414 00
400413 fc
400412 45
40041 c7
4004ed 55

Main Memory

Stack

-

Heap

Data

Text (code)

(0] ‘

Following %r-ip

000000004004ed <loop>:
m) 4004ed: 55

4004f1: c7 45 fc 00 00 0O 00O
4004f8: 83 45 fc 01
4004fc: eb fa

In x86-64, %rip serves as the
program counter and holds
the address of the next
instruction to be executed.

push %rbp

movl $0x0,-0x4(%rbp)

addl $0x1,-0x4(%rbp)

jmp 400418 <loop+Oxb>
0x4004ed \

%rip

4004fd

4004fc

4004fb

o1

4004fa

fc

400419

45

400418

83

400417

00

4004f6

00

400415

00

400414

00

400413

fc

400412

45

4004f1

c7

4004ed

55

Following %r-ip

00000000004004ed <loop>:
4004ed: 55

4004f1: c7 45 fc 00 00 0O 00O
4004f8: 83 45 fc 01
4004fc: eb fa

In x86-64, %rip serves as the
program counter and holds
the address of the next
instruction to be executed.

push

mov1l
addl
jmp

%rbp

$0x0, -0x4(%rbp)
$0x1, -0x4(%rbp)
400418 <loop+0xb>

Ox4004ee

%rip

4004fd

4004fc

4004fb

o1

4004fa

fc

400419

45

400418

83

400417

00

4004f6

00

400415

00

400414

00

400413

fc

400412

45

4004f1

c7

4004ed

55

10

Following %r-ip

00000000004004ed <loop>:
4004ed: 55 push

» 4004f1: c7 45 fc 00 00 00 00 movl
4004f8: 83 45 fc 01 addl
4004fc: eb fa jmp

In x86-64, %rip serves as the
program counter and holds

%rbp

$0x0, -0x4(%rbp)
$0x1, -0x4(%rbp)
400418 <loop+0xb>

the address of the next

instruction to be executed. ox4004F1

%rip

4004fd

4004fc

4004fb

o1

4004fa

fc

400419

45

400418

83

400417

00

4004f6

00

400415

00

400414

00

400413

fc

400412

45

4004f1

c7

4004ed

55

11

Following %r-ip

00000000004004ed <loop>:

4004ed:

4004F1:
B) 4004f8:
4004fc:

55

c7 45 fc 090 00 00 00
83 45 fc 91
eb fa

In x86-64, %rip serves as the
program counter and holds
the address of the next
instruction to be executed.

push %rbp

movl $0x0,-0x4(%rbp)
addl $0x1,-0x4(%rbp)
jmp 400418 <loop+oxy>
0x4004f8

%rip

4004fd

4004fc

4004fb

o1

4004fa

fc

400419

45

400418

83

400417

00

4004f6

00

400415

00

400414

00

400413

fc

400412

45

4004f1

c7

4004ed

55

12

Following %r-ip

00000000004004ed <loop>:
4004ed: 55

4004f1: c7 45 fc 00 00 00 00
400418: 83 45 fc o1
m) 4004fc: eb fa

In x86-64, %rip serves as the
program counter and holds
the address of the next
instruction to be executed.

push %rbp

movl $0x0,-0x4(%rbp
addl $0x1,-0x4(%rbp)
jmp 400418 <loopffoxb>
Ox4004fc

%rip

4004fd

4004fc

4004fb o1
4004fa fc
40049 45
40048 |83
400417 00
400416 00
40045 00
400414 00
40043 fc
400412 45
4004f1 c7
4004ed 55

13

Following %r-ip

00000000004004ed <loop>:
4004ed: 55

4004f1: c7 45 fc 00 00 00 00
400418: 83 45 fc o1
m) 4004fc: eb fa

Normally, dedicated hardware
sets the program counter to the

push

mov1l
addl
jmp

address of the next instruction:

%rip +=current instruction size

%rbp

$0x0, -0x4(%rbp
$0x1, -0x4(%rbp)
400418 <loopfoxb>

Ox4004fc

%rip

4004fd

4004fc

4004fb o1
4004fa fc
40049 45
40048 |83
400417 00
400416 00
40045 00
400414 00
40043 fc
400412 45
4004f1 c7
4004ed 55

14

Interrupting Control Flow EZE

4004fc

4004fb 01
00000000004004ed <loop>: 4004fa | fc
4004ed: 55 push %rbp 4004f9 | 45

40048 83
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp 4004f7 |00
4004f8: 83 45 fc o1 addl $0x1,-0x4(%rbf) 4004f6 | 00

» 4004fc: eb fa jmp 400418 <loopffoxb> 4004F5 | 00

400414 00

400413 fc

o . . . 40042 45
The Jmp instruction is an 2004t 1<
unconditional jump that sets
the program counter to the
jump target (the operand). Ox4004fC
4004ed 55

%rip .

Interrupting Control Flow Rk

4004fc

4004fb |01
00000000004004ed <loop>: 4004fa | fc
4004ed: 55 push %rbp 4004f9 |45

400418 83

4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp) 4004f7 |00

B) 4004f8: 83 45 fc 01 addl $6x1, -0x4(%rbp) 2004f6 | 00
4004fc: eb fa jmp 400418 <loop+oxy> 10045 | 00
4004f4 |00

4004f3 | fc

4004f2 |45

The jmp instruction is an PP

unconditional jump that sets
the program counter to the

jump target (the operand). Ox4004f8

. 4004ed |55
%rip 16

Interrupting Control Flow EX&

4004fc

4004fb 01
00000000004004ed <loop>: 4004fa | fc
4004ed: 55 push %rbp 4004f9 | 45

40048 83
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp 4004f7 |00
4004f8: 83 45 fc o1 addl $0x1,-0x4(%rbf) 4004f6 | 00

» 4004fc: eb fa jmp 400418 <loopffoxb> 4004F5 | 00

400414 00

400413 fc

o . . . 40042 45
The Jmp instruction is an 2004t 1<
unconditional jump that sets
the program counter to the
jump target (the operand). Ox4004fC
4004ed 55

%rip .

Interrupting Control Flow E
4004fc
4004fb 01
00000000004004ed <loop>: 4004fa | fc
4004ed: 55 push %rbp 4004f9 | 45
400418 83
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp) 4004f7 |00
B) 4004f8: 83 45 fc 01 addl $ox1,-0x4(%rbp) rooate | oo
4004fc: eb fa jmp 400418 <loop+oxy> 10045 | 00
400414 00
The above might reverse compileto: int n = 0; 1004€3 | fc
while (true) n++;
o . . . 400412 45
The Jmp instruction is an ro0afl | oo
unconditional jump that sets
the program counter to the
jump target (the operand). Ox4004F8
4004ed 55

%rip 18

The jmp Instruction

The jmp instruction jumps to another instruction in the assembly
code—an unconditional jump.

jmp Label (Direct Jump)
jmp *Operand (Indirect Jump)

The single operand can be encoded directly
into the instruction as a direct jump:

jmp 404f8 <loop+0Oxb>

The operand can be expressed as an indirect
jump using one of the many addressing modes

jmp *%rax

__

Aside: Direct, unconditional jumps
. are frequently used for loopbacks in
. for and while loops and for skipping
| around else blocks. '

Another Aside: Indirect unconditional
- Jumps are much less common, used on |
. behalf of very large switch statements |

and function pointers.

__

Next Question: What if we want to
jump conditionally?
